http://www.cnr.it/ontology/cnr/individuo/prodotto/ID191986
Ab initio complex band structure of conjugated polymers: Effects of hydrid density functional theory and GW schemes (Articolo in rivista)
- Type
- Label
- Ab initio complex band structure of conjugated polymers: Effects of hydrid density functional theory and GW schemes (Articolo in rivista) (literal)
- Anno
- 2012-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1103/PhysRevB.85.235105 (literal)
- Alternative label
Andrea Ferretti1, Giuseppe Mallia, Layla Martin-Samos, Giovanni Bussi, Alice Ruini, Barbara Montanari, and Nicholas M. Harrison (2012)
Ab initio complex band structure of conjugated polymers: Effects of hydrid density functional theory and GW schemes
in Physical review. B, Condensed matter and materials physics; American Physical Society (APS), College Pk (Stati Uniti d'America)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Andrea Ferretti1, Giuseppe Mallia, Layla Martin-Samos, Giovanni Bussi, Alice Ruini, Barbara Montanari, and Nicholas M. Harrison (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Centro S3, CNR-Istituto Nanoscienze, I-41125 Modena, Italy
Department of Chemistry, Imperial College London, London SW7 2AZ, UK
CNR-IOM Democritos, I-34014 Trieste, Italy
Scuola Internazionale Superiore di Studi Avanzati, SISSA via Bonomea 265, I-34136 Trieste, Italy
Dipartimento di Fisica, Università di Modena e Reggio Emilia, I-41125 Modena, Italy
Computational Science and Engineering Department, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, UK
Computational Science and Engineering Department, STFC Daresbury Laboratory, Cheshire WA4 4AD, UK (literal)
- Titolo
- Ab initio complex band structure of conjugated polymers: Effects of hydrid density functional theory and GW schemes (literal)
- Abstract
- The nonresonant tunneling regime for charge transfer across nanojunctions is critically dependent on the so-called ? parameter, governing the exponential decay of the current as the length of the junction increases. For periodic materials, this parameter can be theoretically evaluated by computing the complex band structure (CBS)--or evanescent states--of the material forming the tunneling junction. In this work we present the calculation of the CBS for organic polymers using a variety of computational schemes, including standard local, semilocal, and hybrid-exchange density functionals, and many-body perturbation theory within the GW approximation. We compare the description of localization and ? parameters among the adopted methods and with experimental data. We show that local and semilocal density functionals systematically underestimate the ? parameter, while hybrid-exchange schemes partially correct for this discrepancy, resulting in a much better agreement with GW calculations and experiments. Self-consistency effects and self-energy representation issues of the GW corrections are discussed together with the use of Wannier functions to interpolate the electronic band structure. (literal)
- Editore
- Prodotto di
- Autore CNR
Incoming links:
- Autore CNR di
- Prodotto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Editore di