Uniform approximation on [-1,1] via discrete de la Vallée Poussin means (Articolo in rivista)

Type
Label
  • Uniform approximation on [-1,1] via discrete de la Vallée Poussin means (Articolo in rivista) (literal)
Anno
  • 2012-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1007/s11075-012-9588-4 (literal)
Alternative label
  • Themistoclakis, W. (2012)
    Uniform approximation on [-1,1] via discrete de la Vallée Poussin means
    in Numerical algorithms
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Themistoclakis, W. (literal)
Pagina inizio
  • 593 (literal)
Pagina fine
  • 612 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 60 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 20 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 4 (literal)
Note
  • ISI Web of Science (WOS) (literal)
  • Scopu (literal)
  • athSciNet (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR - IAC Istituto per le Applicazioni del Calcolo \"Mauro PIcone\", via P. Castellino, 111, 80131 Napoli, Italy (literal)
Titolo
  • Uniform approximation on [-1,1] via discrete de la Vallée Poussin means (literal)
Abstract
  • Starting from the function values on the roots of Jacobi polynomials, we construct a class of discrete de la Vallée Poussin means, by approximating the Fourier coefficients with a Gauss-Jacobi quadrature rule. Unlike the Lagrange interpolation polynomials, the resulting algebraic polynomials are uniformly convergent in suitable spaces of continuous functions, the order of convergence being comparable with the best polynomial approximation. Moreover, in the four Chebyshev cases the discrete de la Vallée Poussin means share the Lagrange interpolation property, which allows us to reduce the computational cost. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it