http://www.cnr.it/ontology/cnr/individuo/prodotto/ID188319
Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates (Articolo in rivista)
- Type
- Label
- Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates (Articolo in rivista) (literal)
- Anno
- 2012-01-01T00:00:00+01:00 (literal)
- Alternative label
Enatsu, Y.; Messina, E.; Muroya, Y.; Nakata; Y., Russo; E., Vecchio, A. (2012)
Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates
in Applied mathematics and computation
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Enatsu, Y.; Messina, E.; Muroya, Y.; Nakata; Y., Russo; E., Vecchio, A. (literal)
- Pagina inizio
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- Scopus (literal)
- Google Scholar (literal)
- athematical Reviews on the web (MathSciNet) (literal)
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Enatsu; Department of Pure and Applied Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
Mwssina,Russo; Dipartimento di Matematica e Applicazioni, Universit Degli Studi di Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
Muroya; Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
Nakata; Basque Center for Applied Mathematics, Bizkaia Technology Park, Building 500, E-48160 Derio, Spain
Vecchio; Ist. per Appl. Del Calcolo M. Picone, Sede di Napoli, CNR, Via P. Castellino, 111-80131 Napoli, Italy (literal)
- Titolo
- Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates (literal)
- Abstract
- We analyze stability of equilibria for a delayed SIR epidemic model, in which population growth is subject to logistic growth in absence of disease, with a nonlinear incidence rate satisfying suitable monotonicity conditions. The model admits a unique endemic equilibrium if and only if the basic reproduction number R 0 exceeds one, while the trivial equilibrium and the disease-free equilibrium always exist. First we show that the disease-free equilibrium is globally asymptotically stable if and only if R 0 <= 1. Second we show that the model is permanent if and only if R 0 > 1. Moreover, using a threshold parameter R 0 characterized by the nonlinear incidence function, we establish that the endemic equilibrium is locally asymptotically stable for 1< R0<=R 0 and it loses stability as the length of the delay increases past a critical value for 1
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di