http://www.cnr.it/ontology/cnr/individuo/prodotto/ID187095
Near-Lossless Compression of 3-D Optical Data (Articolo in rivista)
- Type
- Label
- Near-Lossless Compression of 3-D Optical Data (Articolo in rivista) (literal)
- Anno
- 2001-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1109/36.964993 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Bruno Aiazzi; Luciano Alparone; Stefano Baronti (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=964993 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- ISI Web of Science (WOS) (literal)
- Scopu (literal)
- Google Scholar (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- \"Nello Carrara\" Research Institute on Electromagnetic Waves (IROE), National Research Council (CNR), I-50127 Florence, Italy
Department of Electronics and Telecommunications, University of Florence, I-50139 Florence, Italy
\"Nello Carrara\" Research Institute on Electromagnetic Waves (IROE), National Research Council (CNR), I-50127 Florence, Italy (literal)
- Titolo
- Near-Lossless Compression of 3-D Optical Data (literal)
- Abstract
- In this work, near-lossless compression yielding strictly bounded reconstruction error is proposed for high-quality compression of remote sensing images. A classified causal DPCM scheme is presented for optical data, either multi/hyperspectral three-dimensional (3-D) or panchromatic two-dimensional (2-D) observations. It is based on a classified linear-regression prediction, followed by context-based arithmetic coding of the outcome prediction errors and provides excellent performances, both for reversible and for irreversible (near-lossless) compression. Coding times are affordable thanks to fast convergence of training. Decoding is always real time. If the reconstruction errors fall within the boundaries of the noise distributions, the decoded images will be virtually lossless even though encoding was not strictly reversible. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Autore CNR di
- Prodotto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Editore di
- Insieme di parole chiave di