A metric approach to a class of doubly nonlinear evolution equations and applications (Articolo in rivista)

Type
Label
  • A metric approach to a class of doubly nonlinear evolution equations and applications (Articolo in rivista) (literal)
Anno
  • 2008-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.2422/2036-2145.2008.1.04 (literal)
Alternative label
  • R. Rossi; A. Mielke; G. Savare (2008)
    A metric approach to a class of doubly nonlinear evolution equations and applications
    in Annali della Scuola normale superiore di Pisa. Classe di scienze (Testo stamp.)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • R. Rossi; A. Mielke; G. Savare (literal)
Pagina inizio
  • 97 (literal)
Pagina fine
  • 169 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://annaliscienze.sns.it/index.php?page=Article&id=60&PHPSESSID=0cd1dd61cd89b86b6e0a143d22cb4c56 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 7 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
  • Scopu (literal)
  • Google Scholar (literal)
  • Mathematical Reviews on the web (MathSciNet) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • R. Rossi: Dipartimento di Matematica Università di Brescia. Via Valotti, 9 I-25133 Brescia, Italy A. Mielke: Weierstraß-Institut. Mohrenstraße 39 D-10117 Berlin, Germany. Institut fur Mathematik Humboldt-Universitat zu Berlin. Rudower Chaussee, 25 D-12489 Berlin (Adlershof), Germany. G. Savare: Dipartimento di Matematica \"F. Casorati\", Università di Pavia. Via Ferrata, 1 I-27100 Pavia, Italy. (literal)
Titolo
  • A metric approach to a class of doubly nonlinear evolution equations and applications (literal)
Abstract
  • This paper deals with the analysis of a class of doubly nonlinear evolution equations in the framework of a general metric space. We propose for such equations a suitable metric formulation (which in fact extends the notion of Curve of Maximal Slope for gradient flows in metric spaces), and prove the existence of solutions for the related Cauchy problem by means of an approximation scheme by time discretization. Then, we apply our results to obtain the existence of solutions to abstract doubly nonlinear equations in reflexive Banach spaces. The metric approach is also exploited to analyze a class of evolution equations in L1 spaces. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it