http://www.cnr.it/ontology/cnr/individuo/prodotto/ID182318
Nonlinear mobility continuity equations and generalized displacement convexity (Articolo in rivista)
- Type
- Label
- Nonlinear mobility continuity equations and generalized displacement convexity (Articolo in rivista) (literal)
- Anno
- 2010-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/j.jfa.2009.10.016 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- J.A. Carrillo; S. Lisini; G. Savare; D. Slepcev (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://www.sciencedirect.com/science/article/pii/S0022123609004261 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- ISI Web of Science (WOS) (literal)
- Mathematical Reviews on the web (MathSciNet) (literal)
- Google Scholar (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- J. Carriillo: Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
S. Lisini, G. Savare: Dipartimento di Matematica \"F. Casorati\", Università degli Studi di Pavia, Italy
D. Slepcev: Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, USA (literal)
- Titolo
- Nonlinear mobility continuity equations and generalized displacement convexity (literal)
- Abstract
- We consider the geometry of the space of Borel measures endowed with a distance that is defined by generalizing the dynamical formulation of the Wasserstein distance to concave, nonlinear mobilities. We investigate the energy landscape of internal, potential, and interaction energies. For the internal energy, we give an explicit sufficient condition for geodesic convexity which generalizes the condition of McCann. We take an eulerian approach that does not require global information on the geodesics. As by-product, we obtain existence, stability, and contraction results for the semigroup obtained by solving the homogeneous Neumann boundary value problem for a nonlinear diffusion equation in a convex bounded domain. For the potential energy and the interaction energy, we present a nonrigorous argument indicating that they are not displacement semiconvex. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di