Nonlinear mobility continuity equations and generalized displacement convexity (Articolo in rivista)

Type
Label
  • Nonlinear mobility continuity equations and generalized displacement convexity (Articolo in rivista) (literal)
Anno
  • 2010-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.jfa.2009.10.016 (literal)
Alternative label
  • J.A. Carrillo; S. Lisini; G. Savare; D. Slepcev (2010)
    Nonlinear mobility continuity equations and generalized displacement convexity
    in Journal of functional analysis (Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • J.A. Carrillo; S. Lisini; G. Savare; D. Slepcev (literal)
Pagina inizio
  • 1273 (literal)
Pagina fine
  • 1309 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.sciencedirect.com/science/article/pii/S0022123609004261 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 258 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 4 (literal)
Note
  • ISI Web of Science (WOS) (literal)
  • Mathematical Reviews on the web (MathSciNet) (literal)
  • Google Scholar (literal)
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • J. Carriillo: Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain S. Lisini, G. Savare: Dipartimento di Matematica \"F. Casorati\", Università degli Studi di Pavia, Italy D. Slepcev: Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, USA (literal)
Titolo
  • Nonlinear mobility continuity equations and generalized displacement convexity (literal)
Abstract
  • We consider the geometry of the space of Borel measures endowed with a distance that is defined by generalizing the dynamical formulation of the Wasserstein distance to concave, nonlinear mobilities. We investigate the energy landscape of internal, potential, and interaction energies. For the internal energy, we give an explicit sufficient condition for geodesic convexity which generalizes the condition of McCann. We take an eulerian approach that does not require global information on the geodesics. As by-product, we obtain existence, stability, and contraction results for the semigroup obtained by solving the homogeneous Neumann boundary value problem for a nonlinear diffusion equation in a convex bounded domain. For the potential energy and the interaction energy, we present a nonrigorous argument indicating that they are not displacement semiconvex. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it