http://www.cnr.it/ontology/cnr/individuo/prodotto/ID181906
Making image segmentation fully automatic by case-based-reasoning (Contributo in atti di convegno)
- Type
- Label
- Making image segmentation fully automatic by case-based-reasoning (Contributo in atti di convegno) (literal)
- Anno
- 2009-01-01T00:00:00+01:00 (literal)
- Alternative label
Frucci M; Perner P; Sanniti di Baja G. (2009)
Making image segmentation fully automatic by case-based-reasoning
in 10th International Conference on Pattern Recognition and Information Processing, PRIP09, Minsky, Belarus, May 19-21, 2009
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Frucci M; Perner P; Sanniti di Baja G. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
- Proc. of the 10th International Conference on Pattern Recognition and Information Processing, PRIP09 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Istituto di Cibernetica \"E. Caianiello\", CNR
institute of Computer Vision and Applied Computer Science, Leipzig, Germany (literal)
- Titolo
- Making image segmentation fully automatic by case-based-reasoning (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-985-476-704-8 (literal)
- Abstract
- Image segmentation methods involve a number of parameters whose values have to be tuned depending on image domain. In this communication, a watershedbased segmentation algorithm is considered and Case-Based-Reasoning is used for the automatic selection of the values that, assigned to the parameters, produce a satisfactory segmentation. In this way, the segmentation algorithm can be applied to a wider image domain. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Autore CNR di
- Prodotto