Functional optimization through semilocal approximate minimization (Articolo in rivista)

Type
Label
  • Functional optimization through semilocal approximate minimization (Articolo in rivista) (literal)
Anno
  • 2010-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1287/opre.1090.0804 (literal)
Alternative label
  • Cristiano Cervellera; Danilo Macciò; Marco Muselli (2010)
    Functional optimization through semilocal approximate minimization
    in Operations research
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Cristiano Cervellera; Danilo Macciò; Marco Muselli (literal)
Pagina inizio
  • 1491 (literal)
Pagina fine
  • 1504 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 58 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 5 (literal)
Note
  • ISI Web of Science (WOS) (literal)
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Cristiano Cervellera, Danilo Macciò: Istituto di Studi sui Sistemi Intelligenti per l'Automazione, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy Marco Muselli: Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy (literal)
Titolo
  • Functional optimization through semilocal approximate minimization (literal)
Abstract
  • An approach based on semilocal approximation is introduced for the solution of a general class of operations research problems, such as Markovian decision problems, multistage optimal control, and maximum-likelihood estimation. Because it is extremely hard to derive analytical solutions that minimize the cost in most instances of the problem, we must look for approximate solutions. Here, it is shown that good solutions can be obtained with a moderate computational effort by exploiting properties of semilocal approximation through kernel models and efficient sampling of the state space. The convergence of the proposed method, called semilocal approximate minimization (SLAM), is discussed, and the consistency of the solution is derived. Simulation results show the efficiency of SLAM, also through its application to a classic operations research problem, i.e., inventory forecasting. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it