Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy (Altre pubblicazioni)

Type
Label
  • Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy (Altre pubblicazioni) (literal)
Anno
  • 2005-01-01T00:00:00+01:00 (literal)
Alternative label
  • S. Bianchini, B. Hanouzet, R. Natalini (2005)
    Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • S. Bianchini, B. Hanouzet, R. Natalini (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • IAC Report 79 (11/2005); to appear in Communications in Pure and Applied Mathematics (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#descrizioneSinteticaDelProdotto
  • We study the asymptotic time behavior of global smooth solutions to general entropy dissipative hyperbolic systems of balance law in $m$ space dimensions, under the Shizuta-Kawashima condition. We show that these solutions approach constant equilibrium state in the $L^p$-norm at a rate $O(t^{-\frac{m}{2}(1-\frac{1}{p})})$, as $t\to\infty$, for $p\in [\min{\{m,2\}},\infty]$. Moreover, we can show that we can approximate, with a faster order of convergence, the conservative part of the solution in terms of the linearized hyperbolic operator for $m\geq 2$, and by a parabolic equation, in the spirit of Chapman-Enskog expansion. The main tool is given by a detailed analysis of the Green function for the linearized problem. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#supporto
  • Memorie interne (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • SISSA-Trieste Univ. Bordeaux I, Bordeaux, France Istituto per le Applicazioni del Calcolo “M. Picone”, CNR (literal)
Titolo
  • Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
data.CNR.it