http://www.cnr.it/ontology/cnr/individuo/prodotto/ID14451
GP Ensembles for Large Scale Data Classification (Articolo in rivista)
- Type
- Label
- GP Ensembles for Large Scale Data Classification (Articolo in rivista) (literal)
- Anno
- 2006-01-01T00:00:00+01:00 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Gianluigi Folino; Clara Pizzuti ; Giandomenico Spezzano (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- ISI Web of Science (WOS) (literal)
- DBLP (literal)
- Google Scholar (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Istituto di calcolo e reti ad alte prestazioni
Istituto di calcolo e reti ad alte prestazioni
Istituto di calcolo e reti ad alte prestazioni (literal)
- Titolo
- GP Ensembles for Large Scale Data Classification (literal)
- Abstract
- An extension of Cellular Genetic Programming for data classification (CGPC) to induce
an ensemble of predictors is presented. Two algorithms implementing the bagging and boost-
ing techniques are described and compared with CGPC. The approach is able to deal with
large data sets that do not fit in main memory since each classifier is trained on a subset
of the overall training data. The predictors are then combined to classify new tuples. Ex-
periments on several data sets show that, by using a training set of reduced size, better
classification accuracy can be obtained, but at a much lower computational cost. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi