http://www.cnr.it/ontology/cnr/individuo/prodotto/ID14419
Encoding Nondeterministic Fuzzy Tree Automata into Recursive Neural Networks (Articolo in rivista)
- Type
- Label
- Encoding Nondeterministic Fuzzy Tree Automata into Recursive Neural Networks (Articolo in rivista) (literal)
- Anno
- 2004-01-01T00:00:00+01:00 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Petrosino Alfredo, Gori Marco (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- ISI Web of Science (WOS) (literal)
- Titolo
- Encoding Nondeterministic Fuzzy Tree Automata into Recursive Neural Networks (literal)
- Abstract
- Fuzzy neural systems have been a subject of great interest in the last few years, due to their abilities to facilitate the exchange of information between symbolic and subsymbolic domains. However, the models in the literature are not able to deal with structured organization of information, that is typically required by symbolic processing. In many application domains, the patterns are not only structured, but a fuzziness degree is attached
to each subsymbolic pattern primitive. The purpose of this paper is to show how recursive neural networks, properly conceived for
dealing with structured information, can represent nondeterministic fuzzy frontier-to-root tree automata. Whereas available prior
knowledge expressed in terms of fuzzy state transition rules are injected into a recursive network, unknown rules are supposed to be
filled in by data-driven learning. We also prove the stability of the encoding algorithm, extending previous results on the injection of
fuzzy finite-state dynamics in high-order recurrent networks.
(literal)
- Prodotto di
Incoming links:
- Prodotto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi