Nitrogen oxide interaction with copper complexes formed by small peptides belonging to the prion protein octa-repeat region. (Articolo in rivista)

Type
Label
  • Nitrogen oxide interaction with copper complexes formed by small peptides belonging to the prion protein octa-repeat region. (Articolo in rivista) (literal)
Anno
  • 2007-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1039/b617408f (literal)
Alternative label
  • Raffaele Pietro Bonomo; Giuseppe Pappalardo;Enrico Rizzarelli; Anna Maria Santoro; Giovanni Tabbì; Laura Irene Vagliasindi. (2007)
    Nitrogen oxide interaction with copper complexes formed by small peptides belonging to the prion protein octa-repeat region.
    in Dalton transactions (2003. Print); The Royal Society of Chemistry, Cambridge (Regno Unito)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Raffaele Pietro Bonomo; Giuseppe Pappalardo;Enrico Rizzarelli; Anna Maria Santoro; Giovanni Tabbì; Laura Irene Vagliasindi. (literal)
Pagina inizio
  • 1400 (literal)
Pagina fine
  • 1408 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#descrizioneSinteticaDelProdotto
  • Articolo su rivista internazionale (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Bonomo R.P.; Vagliasindi L. I. Dipartimento di Scienze Chimiche, Universit`a di Catania, Viale A. Doria 6, 95125, Catania, Italy. (literal)
Titolo
  • Nitrogen oxide interaction with copper complexes formed by small peptides belonging to the prion protein octa-repeat region. (literal)
Abstract
  • The interaction between NO and copper(II) complexes formed by peptides coming from the N-terminal prion protein octa-repeat region was studied. Aqueous solutions of the Cu-Ac-HGGG-NH2 and the Cu-Ac-PHGGGWGQ-NH2 systems around pH 7.5 were tested after the addition of NONOates as a source of NO. UV-Vis, room temperature and frozen solution EPR spectra showed the occurrence of copper(II) reduction in all these complexes. The reduction of these complexes is probably mediated by the formation of a labile NO adduct, which, after re-oxidation, leads to a relatively stable NO2- adduct through the apical coordination along the void site of their square pyramidal structure. In fact, the most significant shifts in EPR magnetic parameters (g? and A? or giso and Aiso) as well as in the optical parameters (kmax and emax) gave a reason for geometrical changes of the copper coordination polyhedron from a distorted square pyramid to a pseudo-octahedron. The presence of oxygen in the aqueous solution hindered the reduction ability of NO towards copper, but it made it easier to return to the original species. In order to elucidate the possible mechanism of this interaction, the reduction of copper complexed by these ligands was followed by means of zinc powder addition. The further addition of nitrite to the solution containing reduced copper led to the conclusion that nitrite could easily form an adduct, which after re-oxidation presented the same spectral features of the species obtained when the NO interaction was followed. The complexity of this interaction could involve both an inner or an outer-sphere electron transfer mechanism. (literal)
Editore
Prodotto di
Autore CNR

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
data.CNR.it