http://www.cnr.it/ontology/cnr/individuo/prodotto/ID135980
Factor Analysis and Alternating Minimization (Contributo in volume (capitolo o saggio))
- Type
- Label
- Factor Analysis and Alternating Minimization (Contributo in volume (capitolo o saggio)) (literal)
- Anno
- 2007-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/978-3-540-73570-0_8 (literal)
- Alternative label
Finesso L ; Spreij P (2007)
Factor Analysis and Alternating Minimization
Springer-Verlag, Berlin (Germania) in MODELING, ESTIMATION AND CONTROL: FESTSCHRIFT IN HONOR OF GIORGIO PICCI ON THE OCCASION OF THE SIXTY-FIFTH BIRTHDAY, 2007
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Finesso L ; Spreij P (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
- MODELING, ESTIMATION AND CONTROL: FESTSCHRIFT IN HONOR OF GIORGIO PICCI ON THE OCCASION OF THE SIXTY-FIFTH BIRTHDAY (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
- Note
- Scopu (literal)
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Finesso L : Institute of Biomedical Engineering, CNR-ISIB, Padova, Italy /
Spreij P : Korteweg-de Vries Institute for Mathematics, Universiteit van Amsterdam, Amsterdam, The Netherlands (literal)
- Titolo
- Factor Analysis and Alternating Minimization (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#inCollana
- Modeling, Estimation and Control, Festschrift in Honor of Giorgio Picci (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-3-540-73569-4 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
- Chiuso A ; Ferrante A ; Pinzoni S (literal)
- Abstract
- Factor analysis, in its original formulation, deals with the linear statistical model Y=HX+w (1) where H is a deterministic matrix, X and w independent random vectors, the first with dimension smaller than Y, the second with independent components. What makes this model attractive in applied research is the data reduction mechanism built in it. A large number of observed variables Y are explained in terms of a small number of unobserved (latent) variables X perturbed by the independent noise w. Under normality assumptions, which are the rule in the standard theory, all the laws of the model are specified by covariance matrices. More precisely, assume that X and ge are zero mean independent normal vectors with Cov(X) = P and Cov(w) = D, where D is diagonal. It follows from (1) that Cov(Y) = HPH T + D. (literal)
- Editore
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di
- Editore di