Segmentation of magnetic resonance brain images through discriminant analysis (Articolo in rivista)

Type
Label
  • Segmentation of magnetic resonance brain images through discriminant analysis (Articolo in rivista) (literal)
Anno
  • 2003-01-01T00:00:00+01:00 (literal)
Alternative label
  • Amato, U., M. Larobina, A. Antoniadis and B. Alfano (2003)
    Segmentation of magnetic resonance brain images through discriminant analysis
    in Journal of neuroscience methods
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Amato, U., M. Larobina, A. Antoniadis and B. Alfano (literal)
Pagina inizio
  • 65 (literal)
Pagina fine
  • 74 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 131 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#descrizioneSinteticaDelProdotto
  • procedura di eleborazione di immagini per classificazione automatica multispettrale di immagini di risonanza magnetica (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • ISTITUTO DI BIOSTRUTTURE E BIOIMMAGINI CNR NAPOLI (literal)
Titolo
  • Segmentation of magnetic resonance brain images through discriminant analysis (literal)
Abstract
  • Segmentation (tissue classification) of medical images obtained from a magnetic resonance (MR) system is a primary step in most applications of medical image post-processing. This paper describes nonparametric discriminant analysis methods to segment multispectral MR images of the brain. Starting from routinely available spin-lattice relaxation time, spin-spin relaxation time, and proton density weighted images (T1w, T2w, PDw), the proposed family of statistical methods is based on: (i) a transform of the images into components that are statistically independent from each other; (ii) a nonparametric estimate of probability density functions of each tissue starting from a training set; (iii) a classic Bayes 0-1 classification rule. Experiments based on a computer built brain phantom (brainweb) and on eight real patient data sets are shown. A comparison with parametric discriminant analysis is also reported. The capability of nonparametric discriminant analysis in improving brain tissue classification of parametric methods is demonstrated. Finally, an assessment of the role of multispectrality in classifying brain tissues is discussed. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it