http://www.cnr.it/ontology/cnr/individuo/prodotto/ID100565
Quasiharmonic Fields and Beltrami Operators (Comunicazione a convegno)
- Type
- Label
- Quasiharmonic Fields and Beltrami Operators (Comunicazione a convegno) (literal)
- Anno
- 2004-01-01T00:00:00+01:00 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#descrizioneSinteticaDelProdotto
- A quasiharmonic field is a pair $\Cal{F} = [B,E]$ of vector
fields
verifying $div B=0$, $curl E=0$, and coupled by a distorsion inequality.
For a
given $\Cal {F}$, we construct a matrix field $\Cal{A}=\Cal{A}[B,E]$ such
that $\Cal{A} E=B$. This remark in particular shows that the theory of
quasiharmonic fields is equivalent (at least locally) to that of elliptic
PDEs.
Here we stress some properties of our operator $\Cal {A}[B,E]$ and find
applications of them to the study of regularity of solutions to elliptic
PDEs, and to some questions of G-convergence.
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Istituto per le Applicazioni del Calcolo \"M.Picone\" (C.N.R.) Sezione di Napoli- Via P. Castellino 111 - 80131 Napoli (literal)
- Titolo
- Quasiharmonic Fields and Beltrami Operators (literal)
- Abstract
- A quasiharmonic field is a pair $\Cal{F} = [B,E]$ of vector fields verifying $div B=0$, $curl E=0$, and coupled by a distorsion inequality. For a given $\Cal {F}$, we construct a matrix field $\Cal{A}=\Cal{A}[B,E]$ such that $\Cal{A} E=B$. This remark in particular shows that the theory of quasiharmonic fields is equivalent (at least locally) to that of elliptic PDEs. Here we stress some properties of our operator $\Cal {A}[B,E]$ and find applications of them to the study of regularity of solutions to elliptic PDEs, and to some questions of G-convergence. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Autore CNR di
- Prodotto
- Insieme di parole chiave di