Hyperbolic geometrical optics: Hyperbolic glass (Articolo in rivista)

Type
Label
  • Hyperbolic geometrical optics: Hyperbolic glass (Articolo in rivista) (literal)
Anno
  • 2006-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1063/1.2165796 (literal)
Alternative label
  • De Micheli Enrico; Scorza Irene; Viano Giovanni Alberto (2006)
    Hyperbolic geometrical optics: Hyperbolic glass
    in Journal of mathematical physics
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • De Micheli Enrico; Scorza Irene; Viano Giovanni Alberto (literal)
Pagina inizio
  • 023503-1 (literal)
Pagina fine
  • 023503-18 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://jmp.aip.org/resource/1/jmapaq/v47/i2/p023503_s1 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 47 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 2 (literal)
Note
  • Google Scholar (literal)
  • Scopu (literal)
  • athematical Reviews on the web (MathSciNet) (literal)
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy - Dipartimento di Matematica, Universita' di Genova, Genova, Italy - Dipartimento di Fisica, Universita' di Genova, Genova, Italy (literal)
Titolo
  • Hyperbolic geometrical optics: Hyperbolic glass (literal)
Abstract
  • We study the geometrical optics generated by a refractive index of the form n(x,y)=1/y (y>0), where y is the coordinate of the vertical axis in an orthogonal reference frame in [openface R]2. We thus obtain what we call \"hyperbolic geometrical optics\" since the ray trajectories are geodesics in the Poincar√©-Lobachevsky half-plane [openface H]2. Then we prove that the constant phase surface are horocycles and obtain the horocyclic waves, which are closely related to the classical Poisson kernel and are the analogs of the Euclidean plane waves. By studying the transport equation in the Beltrami pseudosphere, we prove (i) the conservation of the flow in the entire strip 0
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it