Information retrieval and machine learning for probabilistic schema matching (Contributo in atti di convegno)

Type
Label
  • Information retrieval and machine learning for probabilistic schema matching (Contributo in atti di convegno) (literal)
Anno
  • 2005-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1145/1099554.1099634 (literal)
Alternative label
  • Nottelmann H.; Straccia U. (2005)
    Information retrieval and machine learning for probabilistic schema matching
    in 14th ACM Conference on Information and Knowledge Management (CIKM-05), Bremen
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Nottelmann H.; Straccia U. (literal)
Pagina inizio
  • 295 (literal)
Pagina fine
  • 296 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://dl.acm.org/citation.cfm?doid=1099554.1099634 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • (Germany, November 2005). Proceedings, pp. 295--296. ACM, 2005. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#descrizioneSinteticaDelProdotto
  • ABSTRACT: Schema matching is the problem of finding correspondences (mapping rules, e.g. logical formulae) between heterogeneous schemas. This paper presents a probabilistic framework, called sPLMap, for automatically learning schema mapping rules. Similar to LSD, different techniques, mostly from the IR field, are combined. Our approach, however, is also able to give a probabilistic interpretation of the prediction weights of the candidates, and to select the rule set with highest matching probability. (literal)
Note
  • Google Scholar (literal)
  • DBLP (literal)
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • University of Dortmund;ISTI-CNR (literal)
Titolo
  • Information retrieval and machine learning for probabilistic schema matching (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
  • 1-59593-140-6 (literal)
Abstract
  • Schema matching is the problem of finding correspondences (mapping rules, e.g. logical formulae) between heterogeneous schemas. This paper presents a probabilistic framework, called sPLMap, for automatically learning schema mapping rules. Similar to LSD, different techniques, mostly from the IR field, are combined.Our approach, however, is also able to give a probabilistic interpretation of the prediction weights of the candidates, and to select the rule set with highest matching probability. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Editore di
Insieme di parole chiave di
data.CNR.it