Monotonicity Conditions in the Mimetic Finite Difference Method (Contributo in atti di convegno)

Type
Label
  • Monotonicity Conditions in the Mimetic Finite Difference Method (Contributo in atti di convegno) (literal)
Anno
  • 2011-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1007/978-3-642-20671-9_69 (literal)
Alternative label
  • Lipnikov, Konstantin; Manzini, Gianmarco; Svyatskiy, Daniil (2011)
    Monotonicity Conditions in the Mimetic Finite Difference Method
    in Sixth International Symposium on finite volumes for complex applications, Praga, 6-10 giugno 2011
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Lipnikov, Konstantin; Manzini, Gianmarco; Svyatskiy, Daniil (literal)
Pagina inizio
  • 653 (literal)
Pagina fine
  • 661 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://link.springer.com/chapter/10.1007%2F978-3-642-20671-9_69 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
  • FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 4 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
  • 4 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • In: Finite volumes for complex applications VI, (J. Fort et al., eds.), Springer, 2011 (Springer proceedings in mathematics, vol. 4), pp. 653-662. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 9 (literal)
Note
  • ISI Web of Science (WOS) (literal)
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Los Alamos National Laboratory; IMATI-CNR; Los Alamos National Laboratory (literal)
Titolo
  • Monotonicity Conditions in the Mimetic Finite Difference Method (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
  • 978-3-642-20671-9 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
  • Jaroslav Fort, Jirí Fürst, Jan Halama, Raphaèle Herbin, Florence Hubert (literal)
Abstract
  • The maximum principle is a major property of solutions of partial differential equations. In this work, we analyze a few constructive algorithms that allow one to embed this property into a mimetic finite difference (MFD) method. The algorithms search in the parametric family of MFD methods for a member that guarantees the discrete maximum principle (DMP). A set of sufficient conditions for the DMP is derived for a few types of meshes. For general meshes, a numerical optimization procedure is proposed and studied numerically. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
Insieme di parole chiave di
data.CNR.it