http://www.cnr.it/ontology/cnr/individuo/prodotto/ID8485
Nonlinear wave resistance of a two-dimensional pressure patch moving on a free surface (Articolo in rivista)
- Type
- Label
- Nonlinear wave resistance of a two-dimensional pressure patch moving on a free surface (Articolo in rivista) (literal)
- Anno
- 2012-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/j.oceaneng.2011.11.003 (literal)
- Alternative label
Maki, K. J., Broglia, R., Doctors, L.J., Di Mascio, A. (2012)
Nonlinear wave resistance of a two-dimensional pressure patch moving on a free surface
in Ocean engineering
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Maki, K. J., Broglia, R., Doctors, L.J., Di Mascio, A. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- doi:10.1016/j.oceaneng.2011.11.003 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://www.sciencedirect.com/science/article/pii/S0029801811002551 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Note
- Scopu (literal)
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Maki, Kevin J.: Department of Naval Architecture and Marine Engineering, University of Michigan, 2600 Draper Rd., Ann Arbor, MI 48109, United States
Doctors, Lawrence J.: The University of New South Wales, Sydney, NSW 2052, Australia
Broglia, Riccardo: INSEAN - Istituto per Studi ed Esperienze di Architettura Navale - Roma
Di Mascio, Andrea: Istituto per le Applicazioni del Calcolo - IAC-CNR, 00161 Rome, Italy (literal)
- Titolo
- Nonlinear wave resistance of a two-dimensional pressure patch moving on a free surface (literal)
- Abstract
- A model problem of the flow under an air-cushion vessel is studied. Two different numerical techniques are used to determine the solution of the free-surface elevation and the wave resistance for a range of Froude number, Reynolds number, value of the pressure applied in the cushion, and depth of the water. The first numerical technique uses a velocity potential that satisfies linearized free-surface boundary conditions, whereas the second employs a finite-volume method to find a solution that satisfies the fully nonlinear free-surface boundary conditions. The results clearly show that for high Froude number and practical values of the cushion pressure, the linear-theory solution is in excellent agreement with the more exact nonlinear prediction. For lower Froude number the solution becomes unsteady, and the disagreement between the two methods is larger. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi