Nonlinear wave resistance of a two-dimensional pressure patch moving on a free surface (Articolo in rivista)

Type
Label
  • Nonlinear wave resistance of a two-dimensional pressure patch moving on a free surface (Articolo in rivista) (literal)
Anno
  • 2012-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.oceaneng.2011.11.003 (literal)
Alternative label
  • Maki, K. J., Broglia, R., Doctors, L.J., Di Mascio, A. (2012)
    Nonlinear wave resistance of a two-dimensional pressure patch moving on a free surface
    in Ocean engineering
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Maki, K. J., Broglia, R., Doctors, L.J., Di Mascio, A. (literal)
Pagina inizio
  • 62 (literal)
Pagina fine
  • 71 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • doi:10.1016/j.oceaneng.2011.11.003 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.sciencedirect.com/science/article/pii/S0029801811002551 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 39 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 10 (literal)
Note
  • Scopu (literal)
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Maki, Kevin J.: Department of Naval Architecture and Marine Engineering, University of Michigan, 2600 Draper Rd., Ann Arbor, MI 48109, United States Doctors, Lawrence J.: The University of New South Wales, Sydney, NSW 2052, Australia Broglia, Riccardo: INSEAN - Istituto per Studi ed Esperienze di Architettura Navale - Roma Di Mascio, Andrea: Istituto per le Applicazioni del Calcolo - IAC-CNR, 00161 Rome, Italy (literal)
Titolo
  • Nonlinear wave resistance of a two-dimensional pressure patch moving on a free surface (literal)
Abstract
  • A model problem of the flow under an air-cushion vessel is studied. Two different numerical techniques are used to determine the solution of the free-surface elevation and the wave resistance for a range of Froude number, Reynolds number, value of the pressure applied in the cushion, and depth of the water. The first numerical technique uses a velocity potential that satisfies linearized free-surface boundary conditions, whereas the second employs a finite-volume method to find a solution that satisfies the fully nonlinear free-surface boundary conditions. The results clearly show that for high Froude number and practical values of the cushion pressure, the linear-theory solution is in excellent agreement with the more exact nonlinear prediction. For lower Froude number the solution becomes unsteady, and the disagreement between the two methods is larger. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it