http://www.cnr.it/ontology/cnr/individuo/prodotto/ID83584
Bipolar preference problems (Contributo in atti di convegno)
- Type
- Label
- Bipolar preference problems (Contributo in atti di convegno) (literal)
- Anno
- 2006-01-01T00:00:00+01:00 (literal)
- Alternative label
[1] Bistarelli S., [2] Pini M. S., [2] Rossi F., [2] Venable K. B. (2006)
Bipolar preference problems
in 17th European Conference on Artificial Intelligence, riva del Garda, 28 Aug - 1 Sept 2006
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- [1] Bistarelli S., [2] Pini M. S., [2] Rossi F., [2] Venable K. B. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- Codice Puma: cnr.iit/2006-A2-020 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Note
- Scopu (literal)
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- [1] CNR-IIT, Pisa, Italy; [2] Dipartimento di Matematica Pura ed Applicata, Università di Padova, Padova, Italy (literal)
- Titolo
- Bipolar preference problems (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-1-58603-642-3 (literal)
- Abstract
- Real-life problems present several kinds of preferences. We focus on problems with both positive and negative preferences, that we call bipolar preference problems. Although seemingly specular notions, these two kinds of preferences should be dealt with differently to obtain the desired natural behaviour. We technically address this by generalizing the soft constraint formalism, which is able to model problems with one kind of preferences. We show that soft constraints model only negative preferences, and we define a new mathematical structure which allows to handle positive preferences as well. We also address the issue of the compensation between positive and negative preferences, studying the properties of this operation. Finally, we extend the notion of arc consistency to bipolar problems, and we show how branch and bound (with or without constraint propagation) can be easily adapted to solve such problems. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Editore di
- Insieme di parole chiave di