http://www.cnr.it/ontology/cnr/individuo/prodotto/ID8074
Pointwise optimality of Bayesian wavelet estimators (Articolo in rivista)
- Type
- Label
- Pointwise optimality of Bayesian wavelet estimators (Articolo in rivista) (literal)
- Anno
- 2007-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/s10463-006-0071-7 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Abramovich F.; Angelini C.; De Canditiis D. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://www.ism.ac.jp/editsec/aism/pdf/059_3_0425.pdf (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- Scopu (literal)
- ISI Web of Science (WOS) (literal)
- Google S (literal)
- Mathematical Reviews on the web (MathSciNet) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Department of Statistics and Operations Research, Tel Aviv University
Istituto per le Applicazioni del Calcolo, CNR, Italy
Istituto per le Applicazioni del Calcolo, CNR, Italy. (literal)
- Titolo
- Pointwise optimality of Bayesian wavelet estimators (literal)
- Abstract
- We consider pointwise mean squared errors of several known Bayesian
wavelet estimators, namely, posterior mean, posterior median and Bayes Factor, where the prior imposed on wavelet coe±cients is a mixture of an atom of probability zero and a Gaussian density. We show that for the properly chosen hyperparameters of the prior, all the three estimators are (up to a log-factor) asymptotically minimax within any prescribed Besov ball. We discuss the Bayesian paradox and compare the results for the pointwise squared risk with those for the global mean squared error (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di