http://www.cnr.it/ontology/cnr/individuo/prodotto/ID80589
Information-theoretic assessment of optical remote-sensing imagery (Contributo in atti di convegno)
- Type
- Label
- Information-theoretic assessment of optical remote-sensing imagery (Contributo in atti di convegno) (literal)
- Anno
- 2004-01-01T00:00:00+01:00 (literal)
- Alternative label
B. Aiazzi, L. Alparone, S. Baronti, C. Lastri, L. Santurri, M. Selva (2004)
Information-theoretic assessment of optical remote-sensing imagery
in ESA EUSC 2004, Madrid, Spain, 17-18 Mar. 2004
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- B. Aiazzi, L. Alparone, S. Baronti, C. Lastri, L. Santurri, M. Selva (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
- Proceedings ESA-EUSC 2004 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
- Theory and Applications of Knowledge-Driven Image Information Mining with Focus on Earth Observation, Madrid, Spain, 17-18 Mar. 2004, ESA Special Publication No. 553, Sep. 2004 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Note
- Google Scholar (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- B. Aiazzi, L. Alparone, S. Baronti, C. Lastri, L. Santurri, M. Selva: IFAC-CNR.
L. Alparone: DET-UniFI: Department of Electronics and Telecommunications, University of Firenze Via Santa Marta, 3, 50139 Firenze (Italy), Alparone@lci.det.unifi.it (literal)
- Titolo
- Information-theoretic assessment of optical remote-sensing imagery (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
- H. Lacoste & L. Ouwehand (literal)
- Abstract
- This work focuses on estimating the information conveyed to a user by multi-band remotely sensed optical data, either multi-spectral or hyper-spectral. A trade-off exists between spatial and spectral resolution, due to physical constraints of sensors imaging with a prefixed SNR. Lossless data compression is exploited to measure the useful information content of the data. The bit-rate achieved by the reversible compression process takes into account both the contribution of the \"observation\" noise, i.e. information regarded as statistical uncertainty, whose relevance is null to a user, and the intrinsic information of hypothetically noise-free radiance data. An entropy model of the image source is defined and, once the standard deviation of the noise, assumed to be Gaussian, has been preliminary measured, such a model is inverted to yield an estimate of the information content of the noise-free source from the code rate. Results of mutual information assessment are reported and discussed on Landsat TM data and on AVIRIS data. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Autore CNR di
- Prodotto
- Editore di
- Insieme di parole chiave di