Interpolating polynomial wavelets on [-1,1] (Articolo in rivista)

Type
Label
  • Interpolating polynomial wavelets on [-1,1] (Articolo in rivista) (literal)
Anno
  • 2005-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1007/s10444-004-1828-2 (literal)
Alternative label
  • Capobianco M.R.; Themistoclakis W. (2005)
    Interpolating polynomial wavelets on [-1,1]
    in Advances in computational mathematics
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Capobianco M.R.; Themistoclakis W. (literal)
Pagina inizio
  • 353 (literal)
Pagina fine
  • 374 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 23 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 4 (literal)
Note
  • Google S (literal)
  • SpringerL (literal)
  • Mathematical Reviews on the web (MathSciNet) (literal)
  • Scopu (literal)
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR, Istituto per le Applicazioni del Calcolo \"Mauro Picone\", via P.Castellino, 111, 80131 Napoli (literal)
Titolo
  • Interpolating polynomial wavelets on [-1,1] (literal)
Abstract
  • The paper gives a contribution of wavelet aspects to classical algebraic polynomial approximation theory. Algebraic polynomial interpolating scaling functions and wavelets are constructed by using the interpolating properties of de la Vallée Poussin kernels w.r.t. the four kinds of Chebyshev weights. For the decomposition and reconstruction of a given function the structure of the involved matrices is studied in order to reduce the computational effort by means of fast cosine and sine transforms. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it