http://www.cnr.it/ontology/cnr/individuo/prodotto/ID77540
Context-Aware Visual Exploration of Molecular Databases (Contributo in atti di convegno)
- Type
- Label
- Context-Aware Visual Exploration of Molecular Databases (Contributo in atti di convegno) (literal)
- Anno
- 2006-01-01T00:00:00+01:00 (literal)
- Alternative label
Di Fatta Giuseppe, Fiannaca Antonino, Rizzo Riccardo, Urso Alfonso, Berthold Michael R., Gaglio Salvatore (2006)
Context-Aware Visual Exploration of Molecular Databases
in IEEE ICDM 2006 Workshop on Data Mining in Bioinformatics, Hong Kong, 18-22 December
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Di Fatta Giuseppe, Fiannaca Antonino, Rizzo Riccardo, Urso Alfonso, Berthold Michael R., Gaglio Salvatore (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://doi.ieeecomputersociety.org/10.1109/ICDMW.2006.51 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
- Proceedings - IEEE International Conference on Data Mining, ICDM (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- 1 - University of Reading, 2,3,4 - ICAR CNR, 6- Universita' di Palermo (literal)
- Titolo
- Context-Aware Visual Exploration of Molecular Databases (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- Abstract
- Facilitating the visual exploration of scientific data has received increasing attention in the past decade or so. Especially in life science related application areas the amount of available data has grown at a breath taking pace. In this paper we describe an approach that allows for visual inspection of large collections of molecular compounds. In contrast to classical visualizations of such spaces we incorporate a specific focus of analysis, for example the outcome of a biological experiment such as high throughout screening results. The presented method uses this experimental data to select molecular fragments of the underlying molecules that have interesting properties and uses the resulting space to generate a two dimensional map based on a singular value decomposition algorithm and a self-organizing map. Experiments on real datasets show that the resulting visual landscape groups molecules of similar chemical properties in densely connected regions (literal)
- Editore
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di
- Editore di