http://www.cnr.it/ontology/cnr/individuo/prodotto/ID75760
RNA-seq: from computational challenges to biological insights (Contributo in atti di convegno)
- Type
- Label
- RNA-seq: from computational challenges to biological insights (Contributo in atti di convegno) (literal)
- Anno
- 2010-01-01T00:00:00+01:00 (literal)
- Alternative label
Costa V., Angelini C., D'Apice L., Mutarelli M, Casamassimi A., Aprile M.,Esposito R.,Leone L., Donizetti A., Crispi S., De Berardinis P., Napoli, Baldini A. and Ciccodicola A. (2010)
RNA-seq: from computational challenges to biological insights
in NETTAB 2010 - BBCC 2010, Napoli
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Costa V., Angelini C., D'Apice L., Mutarelli M, Casamassimi A., Aprile M.,Esposito R.,Leone L., Donizetti A., Crispi S., De Berardinis P., Napoli, Baldini A. and Ciccodicola A. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://www.aracneeditrice.it/aracneweb/index.php/catalogo/9788854836587-detail.html (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
- Network Tools and Applications in Biology NETTAB-BBCC 2010 Biological Wikis (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- IGB-CNR
IAC-CNR
Tigem
IBP-CNR (literal)
- Titolo
- RNA-seq: from computational challenges to biological insights (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-88-548-3658-7 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autoriVolume
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
- Angelo Facchiano, Paolo Romano (literal)
- Abstract
- Expression profiles have been successfully
determined by using hybridization- and tagbased technologies, even though such
approaches suffer from limits and
drawbacks and lack information about rare
RNA species, emerging as contributors to
pathological phenotypes in humans (1-8).
The introduction of next generation
sequencing (NGS) technologies, revealing
mammalian transcriptomes' complexity, has
shown that a small fraction of transcribed
sequences (<2%) is represented by mRNA
(9). However, the unprecedented level of
sensitivity in the data produced by NGS
platforms brings with it the power to make
several biological observations, at the cost
of a considerable effort in the development
of new bioinformatics tools and
computational strategies to deal with these
massive data files.
Indeed, for these large-scale
analyses, data transferring, processing and
handling may represent a computational
bottleneck. Another issue is the availability
of software required to perform one or
more downstream analysis (1).
To this purpose, in this paper we
describe the computational strategies used
to analyze different aspects of a wholetranscriptome. In particular, we illustrate
the results of the analysis performed on a
dataset obtained from a strand-specific
RNA sequenicng of ribosomal-depleted
samples, isolated from a cell type impaired
in the Down syndrome (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Editore di
- Insieme di parole chiave di