Logic Classification and Feature Selection for Biomedical Data (Articolo in rivista)

Type
Label
  • Logic Classification and Feature Selection for Biomedical Data (Articolo in rivista) (literal)
Anno
  • 2008-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.camwa.2006.12.093 (literal)
Alternative label
  • Bertolazzi, P.; Felici, G.; Festa, P.; Lancia, G. (2008)
    Logic Classification and Feature Selection for Biomedical Data
    in Computers & mathematics with applications (1987)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Bertolazzi, P.; Felici, G.; Festa, P.; Lancia, G. (literal)
Pagina inizio
  • 889 (literal)
Pagina fine
  • 899 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 55 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 11 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 5 (literal)
Note
  • Scopu (literal)
  • ISI Web of Science (WOS) (literal)
  • athematical Reviews on the web (MathSciNet) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • P. Bertolazzi Istituto di Analisi dei Sistemi ed Informatica \"Antonio Ruberti\" del CNR, Viale Manzoni 30, 00185, Rome, Italy G. Felici Istituto di Analisi dei Sistemi ed Informatica \"Antonio Ruberti\" del CNR, Viale Manzoni 30, 00185, Rome, Italy P. Festa Dipartimento di Matematica e Applicazioni \"R.M. Caccioppoli\", Universitá degli Studi di Napoli Federico II, Italy G. Lancia Dipartimento di Informatica e Matematica, Universitá di Udine, Italy (literal)
Titolo
  • Logic Classification and Feature Selection for Biomedical Data (literal)
Abstract
  • In this paper we investigate logic classification and related feature selection algorithms for large biomedical data sets. When the data is in binary/logic form, the feature selection problem can be formulated as a Set Covering problem of very large dimensions, whose solution is computationally challenging. We propose an alternative approximated formulation for feature selection that results in an extension of Set Covering of compact size, and use the logic classifier Lsquare to test its performances on two well-known data sets. An ad hoc metaheuristic of the GRASP type is used to solve efficiently the feature selection problem. A simple and effective method to convert rational data into logic data by interval mapping is also described. The computational results obtained are promising and the use of logic models, that can be easily understood and integrated with other domain knowledge, is one of the major strengths of this approach. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it