http://www.cnr.it/ontology/cnr/individuo/prodotto/ID7116
The circular flow number of a 6-edge-connected graph is less than four (Articolo in rivista)
- Type
- Label
- The circular flow number of a 6-edge-connected graph is less than four (Articolo in rivista) (literal)
- Anno
- 2002-01-01T00:00:00+01:00 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Galluccio, A.; Goddyn, L. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#descrizioneSinteticaDelProdotto
- The flow number $\phi(G)$ of $G$ is a graph parameter introduced by
Tutte as a dual to the chromatic number. Tutte conjectured in
1966 that: every 4-edge-connected graph $G$ has $\phi(G)=3$ and this conjecture is still one of the fundamental open problems in combinatorics.
We study a graph parameter, the circular flow number $\phi_c(G)$,
which is a refinement of the flow number, i.e.,
$\phi(G) := \lceil \phi_c(G)\rceil$, and we made a significant step towards the statement of Tutte's conjecture by proving that
every $-edge-connected graph $G$ has $\phi_c(G)<4$.
(literal)
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- A. Galluccio: IASI-CNR \"A. Ruberti\", Roma (Italy)
L.A. Goddyn: Dept. Mathematics, Simon Fraser University, Burnaby (Canada) (literal)
- Titolo
- The circular flow number of a 6-edge-connected graph is less than four (literal)
- Abstract
- It is shown that every 6-edge-connected graph admits a circulation whose
range lies in the interval [1,3). (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di