The circular flow number of a 6-edge-connected graph is less than four (Articolo in rivista)

Type
Label
  • The circular flow number of a 6-edge-connected graph is less than four (Articolo in rivista) (literal)
Anno
  • 2002-01-01T00:00:00+01:00 (literal)
Alternative label
  • Galluccio, A.; Goddyn, L. (2002)
    The circular flow number of a 6-edge-connected graph is less than four
    in Combinatorica (Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Galluccio, A.; Goddyn, L. (literal)
Pagina inizio
  • 455 (literal)
Pagina fine
  • 459 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 22 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#descrizioneSinteticaDelProdotto
  • The flow number $\phi(G)$ of $G$ is a graph parameter introduced by Tutte as a dual to the chromatic number. Tutte conjectured in 1966 that: every 4-edge-connected graph $G$ has $\phi(G)=3$ and this conjecture is still one of the fundamental open problems in combinatorics. We study a graph parameter, the circular flow number $\phi_c(G)$, which is a refinement of the flow number, i.e., $\phi(G) := \lceil \phi_c(G)\rceil$, and we made a significant step towards the statement of Tutte's conjecture by proving that every $-edge-connected graph $G$ has $\phi_c(G)<4$. (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • A. Galluccio: IASI-CNR \"A. Ruberti\", Roma (Italy) L.A. Goddyn: Dept. Mathematics, Simon Fraser University, Burnaby (Canada) (literal)
Titolo
  • The circular flow number of a 6-edge-connected graph is less than four (literal)
Abstract
  • It is shown that every 6-edge-connected graph admits a circulation whose range lies in the interval [1,3). (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it