Evaluation of Feature Subset Selection, Feature Weighting, and Prototype Selection for Biomedical Applications (Articolo in rivista)

Type
Label
  • Evaluation of Feature Subset Selection, Feature Weighting, and Prototype Selection for Biomedical Applications (Articolo in rivista) (literal)
Anno
  • 2010-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.4236/jsea.2010.31005 (literal)
Alternative label
  • Little S.; Colantonio S.; Salvetti O.; Perner P. (2010)
    Evaluation of Feature Subset Selection, Feature Weighting, and Prototype Selection for Biomedical Applications
    in Journal of software engineering and applications; Scientific Research Publishing, Inc., Petaluma, CA (Stati Uniti d'America)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Little S.; Colantonio S.; Salvetti O.; Perner P. (literal)
Pagina inizio
  • 39 (literal)
Pagina fine
  • 49 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.scirp.org/journal/PaperInformation.aspx?paperID=1244 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 3 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • In: Journal of Software Engineering and Applications, vol. 3 (1) pp. 39 - 49. Knowledge Research Publishing Inc, 2010. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 1 (literal)
Note
  • Google Scholar (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Institute of Computer Vision and Applied Computer Sciences (IBaI), Leipzig - Germany (Little S.; Perner P.) CNR-ISTI, Pisa (Colantonio S.; Salvetti O.) (literal)
Titolo
  • Evaluation of Feature Subset Selection, Feature Weighting, and Prototype Selection for Biomedical Applications (literal)
Abstract
  • Many medical diagnosis applications are characterized by datasets that contain under-represented classes due to the fact that the disease is much rarer than the normal case. In such a situation classifiers such as decision trees and Naïve Bayesian that generalize over the data are not the proper choice as classification methods. Case-based classifiers that can work on the samples seen so far are more appropriate for such a task. We propose to calculate the contingency table and class specific evaluation measures despite the overall accuracy for evaluation purposes of classifiers for these specific data characteristics. We evaluate the different options of our case-based classifier and compare the performance to decision trees and Naïve Bayesian. Finally, we give an outlook for further work. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
Insieme di parole chiave di
data.CNR.it