Image classification via adaptive ensembles of descriptor-specific classifiers (Articolo in rivista)

Type
Label
  • Image classification via adaptive ensembles of descriptor-specific classifiers (Articolo in rivista) (literal)
Anno
  • 2010-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1134/S1054661810010025 (literal)
Alternative label
  • Fagni T.; Falchi F.; Sebastiani F. (2010)
    Image classification via adaptive ensembles of descriptor-specific classifiers
    in Pattern recognition and image analysis; Maik Nauka/Interperiodica/Springer, New York (Stati Uniti d'America)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Fagni T.; Falchi F.; Sebastiani F. (literal)
Pagina inizio
  • 21 (literal)
Pagina fine
  • 28 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.springerlink.com/content/f6kq590623178727/ (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 20 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • In: Pattern Recognition and Image Analysis, vol. 20 (1) pp. 21 - 28. Springer Verlag, 2010. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 8 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 1 (literal)
Note
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR-ISTI, Pisa (literal)
Titolo
  • Image classification via adaptive ensembles of descriptor-specific classifiers (literal)
Abstract
  • An automated classification system usually consists of (i) a supervised learning algorithm for automatically generating classifiers from training data, and (ii) a representation scheme for converting the training objects into vectorial representations of their content. In this work, we take a detour from this tradition and present an approach to image classification based on an adaptive ensemble of classifiers, each specialized on classifying images based on a single \"descriptor\". Each descriptor focuses on a different aspect, or perspective, of images; an ensemble of descriptor-specific classifiers can thus be seen as a committee of experts, each viewing the problem to be solved with a different slant, of from a different viewpoint. We test four different ways to set up such an ensemble, based on different ways of leveraging on the individual responses returned by each member of the ensemble, and on how confident these members are on their responses. We test this approach by using five different MPEG-7 descriptors on the task of assigning photographs of stone slabs to classes representing different types of stones. Our experimental results show important accuracy improvements with respect to a baseline in which a single classifier, working an all five descriptors at the same time, is employed. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
Insieme di parole chiave di
data.CNR.it