Attribution of precipitation changes on a regional scale by neural network modeling: A case study (Articolo in rivista)

Type
Label
  • Attribution of precipitation changes on a regional scale by neural network modeling: A case study (Articolo in rivista) (literal)
Anno
  • 2010-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.3390/w2030321 (literal)
Alternative label
  • Pasini, A. (1); Langone, R (2) (2010)
    Attribution of precipitation changes on a regional scale by neural network modeling: A case study
    in Water (Basel); Molecular Diversity Preservation International-MDPI, Basel (Swaziland)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Pasini, A. (1); Langone, R (2) (literal)
Pagina inizio
  • 321 (literal)
Pagina fine
  • 332 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 2 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 12 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • 1) CNR, Institute of Atmospheric Pollution Research, via Salaria km 29.300, I-00015 Monterotondo Stazione, Rome, Italy; 2) Katholieke Universiteit Leuven, Department ESAT/SISTA, Leuven, Belgium; (literal)
Titolo
  • Attribution of precipitation changes on a regional scale by neural network modeling: A case study (literal)
Abstract
  • On a regional scale, climate variability masks any direct link between external forcings and precipitation values. Thus, the problem of attribution of precipitation changes splits into two distinct steps: understanding how forcings influence circulation patterns and finding relationships between these patterns and the behavior of precipitation. Here, we deal with this second step, by analyzing data about eight circulation indices and their influence on precipitation anomalies in an extended Italian Alpine region. The methods used are bivariate nonlinear analysis and neural network modeling. We identify the most influential circulation patterns in each season and work out neural network models that are able to substantially describe the climate variability of precipitation at this regional scale. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
Insieme di parole chiave di
data.CNR.it