http://www.cnr.it/ontology/cnr/individuo/prodotto/ID6353
Textural identification of carbonate rocks by image processing and neural network: methodology proposal and examples (Articolo in rivista)
- Type
- Label
- Textural identification of carbonate rocks by image processing and neural network: methodology proposal and examples (Articolo in rivista) (literal)
- Anno
- 2005-01-01T00:00:00+01:00 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- R. Marmo; S. Amodio; R. Tagliaferri; V. Ferreri; G. Longo (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Dipartimento di Informatica e Sistemistica, Università di Pavia
IAMC,CNR Napoli
Dipartimento di Scienze della Terra, Università Federico II
Dipartimento Matematica e Informatica, Università di Salerno
Dipartimento di Scienze Fisiche, Università Federico II (literal)
- Titolo
- Textural identification of carbonate rocks by image processing and neural network: methodology proposal and examples (literal)
- Abstract
- Using more than 1000 thin sections photos of ancient (Phanerozoic) carbonates from different marine environments (pelagic to shallow-water) a new numerical methodology, based on digitized images of thin sections, is proposed here. In accordance with the Dunham classification, it allows to identify automatically carbonate textures unaffected by post-depositional modifications (recrystallization, dolomitization, meteoric dissolution and so on). The methodology uses, as input, 256 grey-tone digital image and by image processing gives, as output, a set of 23 values of numerical features measured on the whole image including the white areas (calcite cement). A multi-layer perceptron neural network takes as input this features and gives, as output, the estimated class. We used 532 images of thin sections to train the neural network, while to test the methodology we used 268 images taken from the same photo collection and 215 images from San Lorenzello carbonate sequence (Matese Mountains, southern Italy), Early Cretaceous in age. This technique has shown 93.3% and 93.5% of accuracy to classify automatically textures of carbonate rocks using digitized images on the 268 and 215 test sets, respectively. Therefore, the proposed methodology results to be a further promising application to the geosciences allowing to identify carbonate textures of many thin sections in a rapid and accurate way.
A MATLAB-based computer code has been developed for the processing and display of images. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di