http://www.cnr.it/ontology/cnr/individuo/prodotto/ID60269
Multiple Clustering Solutions Analysis Through Lest-Square Consensus Algorithms (Articolo in rivista)
- Type
- Label
- Multiple Clustering Solutions Analysis Through Lest-Square Consensus Algorithms (Articolo in rivista) (literal)
- Anno
- 2010-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/978-3-642-14571-1_16 (literal)
- Alternative label
Murino L., Angelini C., Bifulco I., De Feis I., Raiconi G., Tagliaferri R. (2010)
Multiple Clustering Solutions Analysis Through Lest-Square Consensus Algorithms
in Lecture notes in computer science; Springer-Verlag Berlin, Berlin (Germania)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Murino L., Angelini C., Bifulco I., De Feis I., Raiconi G., Tagliaferri R. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- Google Scholar (literal)
- ISI Web of Science (WOS) (literal)
- Scopus (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Angelini, De Feis: IAC - CNR
Murino, Bifulco, Raiconi, Tagliaferri: Universita' di Salerno (literal)
- Titolo
- Multiple Clustering Solutions Analysis Through Lest-Square Consensus Algorithms (literal)
- Abstract
- Clustering is one of the most important unsupervised learning problems and it deals with finding a structure in a collection of unlabeled data; however, different clustering algorithms applied to the same data-set produce different solutions. In many applications the problem of multiple solutions becomes crucial and providing a limited group of good clusterings is often more desirable than a single solution. In this work we propose the Least Square Consensus clustering that allows a user to extrapolate a small number of different clustering solutions from an initial (large) set of solutions obtained by applying any clustering algorithm to a given data-set. Two different implementations are presented. In both cases, each consensus is accomplished with a measure of quality defined in terms of Least Square error and a graphical visualization is provided in order to make immediately interpretable the result. Numerical experiments are carried out on both synthetic and real data-sets. (literal)
- Editore
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di
- Editore di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi