Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes. (Articolo in rivista)

Type
Label
  • Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes. (Articolo in rivista) (literal)
Anno
  • 2010-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.jprot.2010.06.011 (literal)
Alternative label
  • Cacace G; Mazzeo MF; Sorrentino A; Spada V; Malorni A; Siciliano RA. (2010)
    Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes.
    in Journal of proteomics (Online); Elsevier B.V., Amsterdam (Belgio)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Cacace G; Mazzeo MF; Sorrentino A; Spada V; Malorni A; Siciliano RA. (literal)
Pagina inizio
  • 2021 (literal)
Pagina fine
  • 2030 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 73 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 10 (literal)
Note
  • PubMe (literal)
  • Scopu (literal)
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Science, CNR, Avellino, Italy (literal)
Titolo
  • Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes. (literal)
Abstract
  • Listeria monocytogenes, one of the major food-related pathogens, is the aetiological agent of listeriosis, a potentially life-threatening illness. It is able to survive in hostile environments and stress conditions such as those encountered in food-processing technologies (high salt concentration, wide range of pH and temperature, low water availability) and it also thrives at temperatures ranging from -0.4 to 45 °C. In this study, expression proteomics was applied to gain insight into key cellular events that allow L. monocytogenes to survive and multiply even at refrigeration temperatures. Interestingly, we observed that the adaptation processes mainly affect biochemical pathways related to protein synthesis and folding, nutrient uptake and oxidative stress. Furthermore, proteins implicated in metabolic pathways for energy production, such as glycolysis and Pta-AckA pathway, were present to a higher level in the cells grown at 4 °C. This suggests that, on the whole, cells exhibit an enhanced demand for energy to sustain cold growth. Proteomics may represent a key tool in deciphering specific mechanisms underlying cold adaptation response and, more widely, cell machinery. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
Insieme di parole chiave di
data.CNR.it