Homology modelling studies on human galactose-1-phosphate uridylyltransferase and on its galactosemia-related mutant Q188R provide an explanation of molecular effects of the mutation on homo- and heterodimers. (Articolo in rivista)

Type
Label
  • Homology modelling studies on human galactose-1-phosphate uridylyltransferase and on its galactosemia-related mutant Q188R provide an explanation of molecular effects of the mutation on homo- and heterodimers. (Articolo in rivista) (literal)
Anno
  • 2005-01-01T00:00:00+01:00 (literal)
Alternative label
  • Marabotti A., Facchiano A.M. (2005)
    Homology modelling studies on human galactose-1-phosphate uridylyltransferase and on its galactosemia-related mutant Q188R provide an explanation of molecular effects of the mutation on homo- and heterodimers.
    in Journal of medicinal chemistry
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Marabotti A., Facchiano A.M. (literal)
Pagina inizio
  • 773 (literal)
Pagina fine
  • 779 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • 2 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 48 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Titolo
  • Homology modelling studies on human galactose-1-phosphate uridylyltransferase and on its galactosemia-related mutant Q188R provide an explanation of molecular effects of the mutation on homo- and heterodimers. (literal)
Abstract
  • We have created theoretical models of the three-dimensional dimeric structure of human galactose-1-phosphate uridylyltransferase as well as of homo- and heterodimers carrying the Q188R mutation by using comparative modeling procedures. These mutants are associated to the most frequent form of the genetic disease galactosemia. We have analyzed the impact of this mutation both on enzyme-substrate interactions as well as on interchain interactions in the heterodimers and in the homodimer. We suggest a molecular explanation for the altered function, caused by different enzyme-substrate interactions, and for the partial dominant negative effect of the mutant allele that is present in heterozygotes for this gene, related to a substantial loss of interchain hydrogen bonds. These results can be considered a starting point for a more extensive characterization at the molecular level of the other mutations linked to this genetic disease. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it