http://www.cnr.it/ontology/cnr/individuo/prodotto/ID45298
Analytic modeling of two-dimensional transient atmospheric pollutant dispersion by double GITT and Laplace Transform techniques (Articolo in rivista)
- Type
- Label
- Analytic modeling of two-dimensional transient atmospheric pollutant dispersion by double GITT and Laplace Transform techniques (Articolo in rivista) (literal)
- Anno
- 2009-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/j.envsoft.2008.06.001 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Cassol M; Wortmann S; Rizza U; (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Cassol M: UFRGS, Brasil;
Wortmann S: UFRGS, Brasil; (literal)
- Titolo
- Analytic modeling of two-dimensional transient atmospheric pollutant dispersion by double GITT and Laplace Transform techniques (literal)
- Abstract
- An analytical solution for the transient two-dimensional atmospheric pollutant dispersion problem is presented. The approach used in this problem utilizes the double GITT (Generalized Integral Transform Technique), the Laplace Transform and the matrix diagonalization. Furthermore, mathematical filters are used due to the existence of non-homogeneous boundary conditions. The results we obtained are compared with experimental data for short range downwind dispersion utilizing two well-known experimental dispersion datasets (Copenhagen and Prairie Grass). It is shown that the present analytical approach give good results for downwind concentration except for receptors very close to the release points were any Eulerian approach based on K-closure is known to fail. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di