Discrete random walk models for space-time fractional diffusion (Articolo in rivista)

Type
Label
  • Discrete random walk models for space-time fractional diffusion (Articolo in rivista) (literal)
Anno
  • 2002-01-01T00:00:00+01:00 (literal)
Alternative label
  • R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi (2002)
    Discrete random walk models for space-time fractional diffusion
    in Chemical physics (Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi (literal)
Pagina inizio
  • 521 (literal)
Pagina fine
  • 541 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 284 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#descrizioneSinteticaDelProdotto
  • pubblicazione scientifica (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • R. Gorenflo: Free University of Berlin, Germany F. Mainardi: Dipartimento di Fisica, Universitá di Bologna e ISAC-CNR D. Moretti: CRIBISNET S.p.A., Bologna G. Pagnini e P. Paradisi: ISAC-CNR (literal)
Titolo
  • Discrete random walk models for space-time fractional diffusion (literal)
Abstract
  • A physical-­mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By space­time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order Alpha in (0,2], and skewness Theta, and the first-order time derivative with a Caputo derivative of order Beta in (0,1]. Such evolution equation implies for the flux a fractional Fick's law which accounts for spatial and temporal non-locality. The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process that we view as a generalized diffusion process. By adopting appropriate finite-difference schemes of solution, we generate models of random walk discrete in space and time suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it