http://www.cnr.it/ontology/cnr/individuo/prodotto/ID44589
Discrete random walk models for space-time fractional diffusion (Articolo in rivista)
- Type
- Label
- Discrete random walk models for space-time fractional diffusion (Articolo in rivista) (literal)
- Anno
- 2002-01-01T00:00:00+01:00 (literal)
- Alternative label
R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi (2002)
Discrete random walk models for space-time fractional diffusion
in Chemical physics (Print)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#descrizioneSinteticaDelProdotto
- pubblicazione scientifica (literal)
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- R. Gorenflo: Free University of Berlin, Germany
F. Mainardi: Dipartimento di Fisica, Universitá di Bologna e ISAC-CNR
D. Moretti: CRIBISNET S.p.A., Bologna
G. Pagnini e P. Paradisi: ISAC-CNR (literal)
- Titolo
- Discrete random walk models for space-time fractional diffusion (literal)
- Abstract
- A physical-mathematical approach to anomalous diffusion may be based on
generalized diffusion equations (containing derivatives of fractional order
in space or/and time) and related random walk models. By spacetime fractional
diffusion equation we mean an evolution equation obtained from the standard
linear diffusion equation by replacing the second-order space derivative with
a Riesz-Feller derivative of order Alpha in (0,2], and skewness Theta, and the
first-order time derivative with a Caputo derivative of order Beta in (0,1].
Such evolution equation implies for the flux a fractional Fick's law which
accounts for spatial and temporal non-locality. The fundamental solution
(for the Cauchy problem) of the fractional diffusion equation can be
interpreted as a probability density evolving in time of a peculiar
self-similar stochastic process that we view as a generalized diffusion
process. By adopting appropriate finite-difference schemes of solution, we
generate models of random walk discrete in space and time suitable for
simulating random variables whose spatial probability density evolves in time
according to this fractional diffusion equation.
(literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di