As time goes by: discovering eras in evolving social networks (Contributo in atti di convegno)

Type
Label
  • As time goes by: discovering eras in evolving social networks (Contributo in atti di convegno) (literal)
Anno
  • 2010-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1007/978-3-642-13657-3_11 (literal)
Alternative label
  • Berlingerio M., Coscia M., Giannotti F., Monreale A., Pedreschi D. (2010)
    As time goes by: discovering eras in evolving social networks
    in PAKSS 2010 - Advances in Knowledge Discovery and Data Mining. 14th Pacific-Asia Conference, Hyderabad, India, 21-24 June
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Berlingerio M., Coscia M., Giannotti F., Monreale A., Pedreschi D. (literal)
Pagina inizio
  • 81 (literal)
Pagina fine
  • 90 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.springerlink.com/content/j45n047521024t64/ (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
  • 6118 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • In: PAKDD 2010 - Advances in Knowledge Discovery and Data Mining. 14th Pacific-Asia Conference (Hyderabad, India, 21-24 June 2010). Proceedings, vol. I pp. 81 - 90. Mohammed J. Zaki, Jeffrey Xu Yu, B. Ravindran, Vikram Pudi. (Lecture Notes in Artificial Intelligence, vol. 6118). Springer, 2010. (literal)
Note
  • Scopu (literal)
  • ISI Web of Science (WOS) (literal)
  • PuMa (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR-ISTI, Pisa, Italy; CNR-ISTI, Pisa, Italy; CNR-ISTI, Pisa, Italy; CNR-ISTI, Pisa, Italy; Computer Engineering Department, University of Pisa, Italy (literal)
Titolo
  • As time goes by: discovering eras in evolving social networks (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
  • 978-3-642-13657-3 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
  • Mohammed J. Zaki, Jeffrey Xu Yu, B. Ravindran, Vikram Pudi (literal)
Abstract
  • Within the large body of research in complex network analysis, an important topic is the temporal evolution of networks. Existing approaches aim at analyzing the evolution on the global and the local scale, extracting properties of either the entire network or local patterns. In this paper, we focus instead on detecting clusters of temporal snapshots of a network, to be interpreted as eras of evolution. To this aim, we introduce a novel hierarchical clustering methodology, based on a dissimilarity measure (derived from the Jaccard coefficient) between two temporal snapshots of the network. We devise a framework to discover and browse the eras, either in top-down or a bottom-up fashion, supporting the exploration of the evolution at any level of temporal resolution. We show how our approach applies to real networks, by detecting eras in an evolving co-authorship graph extracted from a bibliographic dataset; we illustrate how the discovered temporal clustering highlights the crucial moments when the network had profound changes in its structure. Our approach is finally boosted by introducing a meaningful labeling of the obtained clusters, such as the characterizing topics of each discovered era, thus adding a semantic dimension to our analysis. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Insieme di parole chiave di
data.CNR.it