Boosting multi-label hierarchical text categorization (Articolo in rivista)

Type
Label
  • Boosting multi-label hierarchical text categorization (Articolo in rivista) (literal)
Anno
  • 2008-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1007/s10791-008-9047-y (literal)
Alternative label
  • Esuli A.; Fagni T.; Sebastiani F. (2008)
    Boosting multi-label hierarchical text categorization
    in Information retrieval (Boston); Springer, Heidelberg (Germania)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Esuli A.; Fagni T.; Sebastiani F. (literal)
Pagina inizio
  • 287 (literal)
Pagina fine
  • 313 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.springerlink.com/content/6r6567w636525024/?MUD=MP (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 11 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • In: Information Retrieval, vol. 11 (4) pp. 287 - 313. Springer Verlag, 2008. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 27 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 4 (literal)
Note
  • Google Scholar (literal)
  • Scopu (literal)
  • ISI Web of Science (WOS) (literal)
  • PuMa (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • ISTI-CNR, Pisa (literal)
Titolo
  • Boosting multi-label hierarchical text categorization (literal)
Abstract
  • Hierarchical Text Categorization (HTC) is the task of generating (usually by means of supervised learning algorithms) text classifiers that operate on hierarchically structured classification schemes. Notwithstanding the fact that most large-sized classification schemes for text have a hierarchical structure, so far the attention of text classification researchers has mostly focused on algorithms for \"flat\" classification, i.e. algorithms that operate on non-hierarchical classification schemes. These algorithms, once applied to a hierarchical classification problem, are not capable of taking advantage of the information inherent in the class hierarchy, and may thus be suboptimal, in terms of efficiency and/or effectiveness. In this paper we propose TreeBoost.MH, a multi-label HTC algorithm consisting of a hierarchical variant of AdaBoost.MH, a very well-known member of the family of \"boosting\" learning algorithms. TreeBoost.MH embodies several intuitions that had arisen before within HTC: e.g. the intuitions that both feature selection and the selection of negative training examples should be performed \"locally\", i.e. by paying attention to the topology of the classification scheme. It also embodies the novel intuition that the weight distribution that boosting algorithms update at every boosting round should likewise be updated \"locally\". All these intuitions are embodied within TreeBoost.MH in an elegant and simple way, i.e. by defining TreeBoost.MH as a recursive algorithm that uses AdaBoost.MH as its base step, and that recurs over the tree structure. We present the results of experimenting TreeBoost.MH on three HTC benchmarks, and discuss analytically its computational cost. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
Insieme di parole chiave di
data.CNR.it