Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications (Articolo in rivista)

Type
Label
  • Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications (Articolo in rivista) (literal)
Anno
  • 2008-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.actbio.2008.05.023 (literal)
Alternative label
  • Elena Landi; Federica Valentini; Anna Tampieri (2008)
    Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications
    in Acta biomaterialia
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Elena Landi; Federica Valentini; Anna Tampieri (literal)
Pagina inizio
  • 1620 (literal)
Pagina fine
  • 1626 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.sciencedirect.com/science/article/pii/S1742706108001621 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 4 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • In: Acta Biomaterialia, vol. 4 (6) pp. 1620 - 1626. Elsevier Science Ltd, 2008. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 6 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, via Granarolo 64, 48018 Faenza (RA), Italy (literal)
Titolo
  • Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications (literal)
Abstract
  • A cryogenic process, including freeze-casting and drying has been performed to obtain hydroxyapatite (HA) scaffolds (approx. diameter 10 mm, height 20 mm) with completely lamellar morphology due to preferentially aligned channel-like pores. Changing the pprocess parameters that influence the cold transmission efficiency from the bottom to the top of the poured HA slurry, lamellar ice crystals with different thickness grew throughout the samples. After sintering, scaffolds with porosity features nearly resembling the ice ones were obtained. The interconnection of pores and the ability of the scaffolds to be rapidly penetrated by synthetic body fluid has been proven. Biohybrid HA/gel composites were prepared, infiltrating HA lamellar scaffolds (45-55 vol.% of porosity) with a 10wt.% solution of gelatine. Colouring genipine was used to cross-link gelatine and clearly show the distribution of the protein in the composite. The compressive mechanical properties of lamellar scaffolds improved with the addition of gelatine: the strength increased up to 5-6 times, while the elastic modulus and strain approximately doubled. The effectiveness of the cross-linkage has been preliminarily verified following scaffold degradation in synthetic body fluid. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it