http://www.cnr.it/ontology/cnr/individuo/prodotto/ID43473
Sr-substituted hydroxyapatites for osteoporotic bone replacement (Articolo in rivista)
- Type
- Label
- Sr-substituted hydroxyapatites for osteoporotic bone replacement (Articolo in rivista) (literal)
- Anno
- 2007-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/j.actbio.2007.05.006 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Elena Landi; Anna Tampieri; Giancarlo Celotti; Simone Sprio; Monica Sandri; Giandomenico Logroscino (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://www.sciencedirect.com/science/article/pii/S1742706107000839 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, via Granarolo 64, 48018 Faenza (RA), Italy
Orthopaedic Department, Catholic University of Rome, largo F.Vito, 1, 00168 Rome, Italy (literal)
- Titolo
- Sr-substituted hydroxyapatites for osteoporotic bone replacement (literal)
- Abstract
- Porous apatites, which during resorption can release in situ Sr ions, were prepared to associate an anti-osteoporotic action with the peculiar features of the inorganic phase constituting the bone. Sr-substituted hydroxyapatite (SrHA) powder was directly synthesized using the classical neutralization route, but including Sr ions, and characterized. The higher solubility of SrHA granules of 400-600 ?m size, potentially usable as a bone filler, was assessed compared with that of analogous stoichiometric HA granules. The Sr released in synthetic body fluid became constant after 1 week. The Ca release is improved for SrHA compared with stoichiometric HA, due to the higher solubility of the first material. Porous scaffolds with micro-macro interconnected porosity, which mimic the morphology of the spongy bone, were prepared by the impregnation of cellulose sponges with suspensions of the powder and a specific sintering process. A compressive strength of 4.52 ± 1.40 MPa was obtained for SrHA scaffolds characterized with 45 vol.% of porosity. Promising biomedical applications, such as resorbable bone filler or bone substitute releasing in situ Sr ions for a prolonged time, can be hypothesized for the SrHA materials when pathologies related with Sr deficiency are present. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di