Influence of the additives and processing conditions on the characteristics of dense SnO2-based ceramics (Articolo in rivista)

Type
Label
  • Influence of the additives and processing conditions on the characteristics of dense SnO2-based ceramics (Articolo in rivista) (literal)
Anno
  • 2003-01-01T00:00:00+01:00 (literal)
Alternative label
  • Nisiro D., Fabbri G., Celotti G.C., Bellosi A. (2003)
    Influence of the additives and processing conditions on the characteristics of dense SnO2-based ceramics
    in Journal of materials science
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Nisiro D., Fabbri G., Celotti G.C., Bellosi A. (literal)
Pagina inizio
  • 2727 (literal)
Pagina fine
  • 2742 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 38 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Titolo
  • Influence of the additives and processing conditions on the characteristics of dense SnO2-based ceramics (literal)
Abstract
  • Three different SnO2-based powder mixtures, containing 2wt% CuO as sintering aid and Sb2O3 in amounts from 0 to 4 wt% as activator of the electrical conductivity, were sintered to high density at temperatures in the range 1000-1400°C and soaking times from 1 to 6 hours. Densification behaviour and microstructure development are strongly dependent on the presence of CuO, that gives rise to a liquid phase, and on Sb2O3 that retards the liquid phase formation and hinders grain growth. Cu and Sb cations can enter s.s. in the SnO2 network with different oxidation states and in different positions, depending on the sintering conditions. The characteristics of the grain boundary phase, of the SnO2 solid solutions and their modification depending on thermal treatments were analyzed. The electrical resistivity values varied in a wide range from 10-1 to 104 Wcm , depending on starting composition and processing conditions: in terms of the final density and of the electrical conductivity, the optimal sintering conditions were found to be 1200°, for 1-3 hours. The electrical resistivity was related to the microstructural features, particularly to the characteristics of the resulting SnO2-based solid solutions. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it