Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device (Articolo in rivista)

Type
Label
  • Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device (Articolo in rivista) (literal)
Anno
  • 2011-01-01T00:00:00+01:00 (literal)
Alternative label
  • Della Corte FG, Rao S, Coppola G, Summonte C (2011)
    Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device
    in Optics express
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Della Corte FG, Rao S, Coppola G, Summonte C (literal)
Pagina inizio
  • 2941 (literal)
Pagina fine
  • 2951 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 19 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • 1. Mediterranea Univ, Dept Informat Sci Math Elect & Transportat DIMET, I-89122 Reggio Di Calabria, Italy 2. CNR, IMM, Unit Napoli, I-80132 Naples, Italy 3. CNR, IMM, Unit Bologna, I-40129 Bologna, Italy (literal)
Titolo
  • Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device (literal)
Abstract
  • Hydrogenated amorphous silicon (a-Si:H) has been already considered for the objective of passive optical elements, like waveguides and ring resonators, within photonic integrated circuits at lambda = 1.55 mu m. However the study of its electro-optical properties is still at an early stage, therefore this semiconductor in practice is not considered for light modulation as yet. We demonstrated, for the first time, effective electro-optical modulation in a reverse biased a-Si:H p-i-n waveguiding structure. In particular, phase modulation was studied in a waveguide integrated Fabry-Perot resonator in which the V(pi).L(pi) product was determined to be 63 V.cm. Characteristic switch-on and switch-off times of 14 ns were measured. The device employed a wider gap amorphous silicon carbide (a-SiC:H) film for the lower cladding layer instead of silicon oxide. In this way the highest temperature involved in the fabrication process was 170 degrees C, which ensured the desired technological compatibility with CMOS processes. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it