Advanced Residual Stress Analysis and FEM Simulation on Heteroepitaxial 3C-SiC for MEMS Application (Articolo in rivista)

Type
Label
  • Advanced Residual Stress Analysis and FEM Simulation on Heteroepitaxial 3C-SiC for MEMS Application (Articolo in rivista) (literal)
Anno
  • 2011-01-01T00:00:00+01:00 (literal)
Alternative label
  • Anzalone R, D'Arrigo G, Camarda M, Locke C, Saddow S E, La Via F (2011)
    Advanced Residual Stress Analysis and FEM Simulation on Heteroepitaxial 3C-SiC for MEMS Application
    in Journal of microelectromechanical systems
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Anzalone R, D'Arrigo G, Camarda M, Locke C, Saddow S E, La Via F (literal)
Pagina inizio
  • 745 (literal)
Pagina fine
  • 752 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 20 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • 1. Natl Res Council CNR IMM, Inst Microelect & Microsyst, I-95121 Catania, Italy 2. Univ S Florida, Dept Elect Engn, Tampa, FL 33620 USA (literal)
Titolo
  • Advanced Residual Stress Analysis and FEM Simulation on Heteroepitaxial 3C-SiC for MEMS Application (literal)
Abstract
  • SiC is a candidate material for microelectromechanical and nanoelectromechanical systems, but the high residual stress created during the film grow limits the development of the material for these applications. To understand the stress relaxation mechanism in hetero-epitaxial 3C-SiC films, different micromachined free-standing structures have been realized. In this paper, assisted by finite-element method (FEM), a micromachined planar rotating probe was developed for residual stress analysis to split the stress into the following two components: 1) the gradient residual stress (sigma(1)) related to the film defects and 2) the uniform stress (sigma(0)) related to the substrate. Transmission electron microscopy characterization studies about the defect formation and the defect evolution as a function of thickness on 3C-SiC on the Si substrate revealed the problems due to the incorrect linear stress approximation in a heteroepitaxial thin film. With FEM, an exponential approximation of the stress relationship was studied, yielding a better fit with the experimental data. This paper shows that the new approximation of the total residual stress function reduces the actual disagreement between experimental and simulation data. (literal)
Prodotto di
Autore CNR

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it