Bias-driven local density of states alterations and transport in ballistic molecular devices (Articolo in rivista)

Type
Label
  • Bias-driven local density of states alterations and transport in ballistic molecular devices (Articolo in rivista) (literal)
Anno
  • 2008-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1063/1.2905216 (literal)
Alternative label
  • Ioannis Deretzis and Antonino La Magna (2008)
    Bias-driven local density of states alterations and transport in ballistic molecular devices
    in Journal of chemical physics online
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Ioannis Deretzis and Antonino La Magna (literal)
Pagina inizio
  • 6 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://jcp.aip.org/resource/1/jcpsa6/v128/i16/p164706_s1 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 120 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR-IMM (literal)
Titolo
  • Bias-driven local density of states alterations and transport in ballistic molecular devices (literal)
Abstract
  • We study dynamic nonequilibrium electron charging phenomena in ballistic molecular devices at room temperature that compromise their response to bias and whose nature is evidently distinguishable from static Schottky-type potential barriers. Using various metallic/semiconducting carbon nanotubes and alkane dithiol molecules as active parts of a molecular bridge, we perform self-consistent quantum transport calculations under the nonequilibrium Green's function formalism coupled to a three-dimensional Poisson solver for a mutual description of chemistry and electrostatics. Our results sketch a particular tracking relationship between the device's local density of states and the contact electrochemical potentials that can effectively condition the conduction process by altering the electronic structure of the molecular system. Such change is unassociated to electronic/phononic scattering effects while its extent is highly correlated to the conducting character of the system, giving rise to an increase of the intrinsic resistance of molecules with a semiconducting character and a symmetric mass-center disposition. (literal)
Prodotto di
Autore CNR

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it