Transport localization in heterogeneous Schottky barriers of quantum-defined metal films (Articolo in rivista)

Type
Label
  • Transport localization in heterogeneous Schottky barriers of quantum-defined metal films (Articolo in rivista) (literal)
Anno
  • 2006-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1209/epl/i2006-10018-8 (literal)
Alternative label
  • Giannazzo F; Roccaforte F; Raineri V; Liotta SF (2006)
    Transport localization in heterogeneous Schottky barriers of quantum-defined metal films
    in Europhysics letters (Print); EDP Sciences, Les Ulis Cedex (Francia)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Giannazzo F; Roccaforte F; Raineri V; Liotta SF (literal)
Pagina inizio
  • 686 (literal)
Pagina fine
  • 692 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 74 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR, IMM, I-95121 Catania, Italy; STMicroelect, I-95121 Catania, Italy (literal)
Titolo
  • Transport localization in heterogeneous Schottky barriers of quantum-defined metal films (literal)
Abstract
  • The nanometric localization of current transport in heterogeneous Schottky barriers was obtained by the combination of the electric field localization at the apex of a biased conductive atomic force microscopy (c-AFM) tip and of the metal films high-resistivity properties. An abrupt increase of the resistivity, modeled by a quantum-mechanical approach, was measured in Au thin films with a thickness below 10 nm. For Au ultrathin film resistivity, exceeding by two orders of magnitude the bulk value, the nanometric localization of the current transport occurs. This physical effect represents the basic principle of a microscopy approch for two-dimensional Schottky barrier height mapping, which is alternative to conventional ballistic electron emission microscopy ( BEEM). A spatial resolution in the order of the tip diameter ( 10 - 20 nm) is demonstrated by considering the realistic description of the system ( physical and geometrical). Schottky barrier inhomogeneities in a Au/4H-SiC system were imaged with an energy resolution better than 0.1 eV. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
Insieme di parole chiave di
data.CNR.it