Multiscale fuel type mapping in fragmented ecosystems: preliminary results from hyperspectral MIVIS and multispectral Landsat TM data (Articolo in rivista)

Type
Label
  • Multiscale fuel type mapping in fragmented ecosystems: preliminary results from hyperspectral MIVIS and multispectral Landsat TM data (Articolo in rivista) (literal)
Anno
  • 2006-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1080/01431160500227631 (literal)
Alternative label
  • Lasaponara R; Lanorte A; Pignatti S (2006)
    Multiscale fuel type mapping in fragmented ecosystems: preliminary results from hyperspectral MIVIS and multispectral Landsat TM data
    in International journal of remote sensing (Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Lasaponara R; Lanorte A; Pignatti S (literal)
Pagina inizio
  • 587 (literal)
Pagina fine
  • 593 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 27 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 7 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 3 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR IMAA (literal)
Titolo
  • Multiscale fuel type mapping in fragmented ecosystems: preliminary results from hyperspectral MIVIS and multispectral Landsat TM data (literal)
Abstract
  • This study aims to ascertain how well remote sensing data can characterize fuel type at different spatial scales in fragmented ecosystems. For this purpose, multisensor and multiscale remote sensing data such as hyperspectral Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) and Landsat Thematic Mapper (TM) data acquired in 1998 were analysed for a test area in southern Italy characterized by mixed vegetation covers and complex topography. Fieldwork fuel type recognition, performed at the same time as remote sensing data acquisitions, was used to assess the results obtained for the considered test areas. Results from preliminary analysis showed that the use of unmixing techniques allows an increase in accuracy of around 7% compared with the accuracy level obtained by applying a widely used classification algorithm. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it