Flame-Formed Carbon Nanoparticles: Morphology, Interaction Forces, and Hamaker Constant from AFM (Articolo in rivista)

Type
Label
  • Flame-Formed Carbon Nanoparticles: Morphology, Interaction Forces, and Hamaker Constant from AFM (Articolo in rivista) (literal)
Anno
  • 2015-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1080/02786826.2015.1022634 (literal)
Alternative label
  • Gianluigi De Falco, Mario Commodo, Patrizia Minutolo, Andrea D'Anna (2015)
    Flame-Formed Carbon Nanoparticles: Morphology, Interaction Forces, and Hamaker Constant from AFM
    in Aerosol science and technology (Print); TAYLOR & FRANCIS LTD, London (Regno Unito)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Gianluigi De Falco, Mario Commodo, Patrizia Minutolo, Andrea D'Anna (literal)
Pagina inizio
  • 281 (literal)
Pagina fine
  • 289 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.tandfonline.com/eprint/5d8ZCnKcfdW9mBMZTwqI/full#.VSTw8eHl_S0 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 49 (literal)
Rivista
Note
  • Google Scholar (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Universit√† degli Studi di Napoli Federico II, Napoli, Italy Istituto di Ricerche sulla Combustione, CNR, Napoli, Italy (literal)
Titolo
  • Flame-Formed Carbon Nanoparticles: Morphology, Interaction Forces, and Hamaker Constant from AFM (literal)
Abstract
  • Interaction forces acting between combustion-generated carbon particles were studied by using atomic force microscopy (AFM). To this aim, carbon nanoparticles were produced in fuelrich ethylene/air laminar premixed flames with different equivalent ratios F, and analyzed at a fixed residence time in the flame. Particles were collected on mica substrates by means of a thermophoretic sampling system and then analyzed by AFM. A characterization of particle dimension and morphology were performed operating AFM in semicontact mode, showing that the shape of the particles collected on a sampling plate is never spherical. Increasing the flame-equivalent ratio, particle shape moves from an almost atomically thick object to thicker compounds, indicating the transformation from particles made of small, defective graphene-like sheets to particles containing stacked aromatic layers. Attractive and adhesive forces between a titanium nitride probe and sampled particles were calculated from force-distance curves acquired in AFM force spectroscopy mode. Assuming that van der Walls forces are the main contribution to attractive forces, the measurement of attractive forces allowed the evaluation of the Hamaker constant for the carbon particles as a function of the flame-equivalent ratio. The comparison of the measured Hamaker constants with the values for benzene and HOPG, suggests a continuous increase of the aromatic domains and the three-dimensional order within the particles when the flame-equivalent ratio increases. (literal)
Editore
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
data.CNR.it