Bonding of Histidine to Cerium Oxide (Articolo in rivista)

Type
Label
  • Bonding of Histidine to Cerium Oxide (Articolo in rivista) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1021/jp404385h (literal)
Alternative label
  • Tsud, Nataliya; Acres, Robert G.; Iakhnenko, Marianna; Mazur, Daniel; Prince, Kevin C.; Matolin, Vladimir (2013)
    Bonding of Histidine to Cerium Oxide
    in The journal of physical chemistry. B
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Tsud, Nataliya; Acres, Robert G.; Iakhnenko, Marianna; Mazur, Daniel; Prince, Kevin C.; Matolin, Vladimir (literal)
Pagina inizio
  • 9182 (literal)
Pagina fine
  • 9193 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 117 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 12 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 31 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Charles University Prague; Elettra Sincrotrone Trieste SCpA; Taras Shevchenko National University Kiev; CNR IOM Lab TASC (literal)
Titolo
  • Bonding of Histidine to Cerium Oxide (literal)
Abstract
  • Adsorption of histidine on cerium oxide model surfaces was investigated by synchrotron radiation photoemission, resonant photoemission, and near edge X-ray absorption fine structure spectroscopies. Histidine was evaporated in a vacuum onto ordered stoichiometric CeO2(111) and partially reduced CeO1.9 thin films grown on Cu(111). Histidine binds to CeO2 in anionic form via the carboxylate group and all three nitrogen atoms, with the imidazole ring parallel to the surface. The amino nitrogen atom of the imidazole ring (IM) is deprotonated, and both IM nitrogen atoms form strong bonds via pi-orbitals, while the alpha-amino nitrogen interacts with the oxide via its hydrogen atoms. In the case of CeO1.9, the deprotonation of the amino nitrogen of the imidazole ring is less pronounced and N K-edge spectra do not show a clear orientation of the ring with respect to the surface. A minor reduction of the cerium surface on adsorption of histidine was observed and explained by charge exchange as a result of hybridization of the pi-orbitals of the IM ring with the f and d orbitals of ceria. Knowledge of histidine adsorption on the cerium oxide surface can be used for design of mediator-less biosensors where the histidine-containing proteins can be strongly bound to the oxide surface via the imidazole side chain of this residue. (literal)
Prodotto di
Autore CNR

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it