Ergodic and mixing quantum channels in finite dimensions (Articolo in rivista)

Type
Label
  • Ergodic and mixing quantum channels in finite dimensions (Articolo in rivista) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1088/1367-2630/15/7/073045 (literal)
Alternative label
  • Burgarth D.; Chiribella G.; Giovannetti V.; Perinotti P.; Yuasa K. (2013)
    Ergodic and mixing quantum channels in finite dimensions
    in New journal of physics
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Burgarth D.; Chiribella G.; Giovannetti V.; Perinotti P.; Yuasa K. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.scopus.com/inward/record.url?eid=2-s2.0-84881330654&partnerID=q2rCbXpz (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 15 (literal)
Rivista
Note
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Institute of Mathematics and Physics, Aberystwyth University, Penglais Campus, SY23 3BZ Aberystwyth, United Kingdom; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China; NEST, Istituto Nanoscienze, CNR, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; Dipartimento di Fisica, Universit√† Degli Studi di Pavia, INFN Sezione di Pavia, Via Bassi 6, I-27100 Pavia, Italy; Department of Physics, Waseda University, Tokyo 169-8555, Japan (literal)
Titolo
  • Ergodic and mixing quantum channels in finite dimensions (literal)
Abstract
  • The paper provides a systematic characterization of quantum ergodic and mixing channels in finite dimensions and a discussion of their structural properties. In particular, we discuss ergodicity in the general case where the fixed point of the channel is not a full-rank (faithful) density matrix. Notably, we show that ergodicity is stable under randomizations, namely that every random mixture of an ergodic channel with a generic channel is still ergodic. In addition, we prove several conditions under which ergodicity can be promoted to the stronger property of mixing. Finally, exploiting a suitable correspondence between quantum channels and generators of quantum dynamical semigroups, we extend our results to the realm of continuous-time quantum evolutions, providing a characterization of ergodic Lindblad generators and showing that they are dense in the set of all possible generators. ¬© IOP Publishing and Deutsche Physikalische Gesellschaft. (literal)
Prodotto di
Autore CNR

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it