Colloidal Bi2S3 Nanocrystals: Quantum Size Effects and Midgap States (Articolo in rivista)

Type
Label
  • Colloidal Bi2S3 Nanocrystals: Quantum Size Effects and Midgap States (Articolo in rivista) (literal)
Anno
  • 2014-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1002/adfm.201303879 (literal)
Alternative label
  • Aresti, Mauro; Saba, Michele; Piras, Roberto; Marongiu, Daniela; Mula, Guido; Quochi, Francesco; Mura, Andrea; Cannas, Carla; Mureddu, Mauro; Ardu, Andrea; Ennas, Guido; Calzia, Vasco; Mattoni, Alessandro; Musinu, Anna; Bongiovanni, Giovanni (2014)
    Colloidal Bi2S3 Nanocrystals: Quantum Size Effects and Midgap States
    in Advanced functional materials (Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Aresti, Mauro; Saba, Michele; Piras, Roberto; Marongiu, Daniela; Mula, Guido; Quochi, Francesco; Mura, Andrea; Cannas, Carla; Mureddu, Mauro; Ardu, Andrea; Ennas, Guido; Calzia, Vasco; Mattoni, Alessandro; Musinu, Anna; Bongiovanni, Giovanni (literal)
Pagina inizio
  • 3341 (literal)
Pagina fine
  • 3350 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 24 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 10 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 22 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • University of Cagliari; University of Cagliari; CNR IOM Cagliari (literal)
Titolo
  • Colloidal Bi2S3 Nanocrystals: Quantum Size Effects and Midgap States (literal)
Abstract
  • Among solution-processed nanocrystals containing environmentally benign elements, bismuth sulfide (Bi2S3) is a very promising n-type semiconductor for solar energy conversion. Despite the prompt success in the fabrication of optoelectronic devices deploying Bi2S3 nanocrystals, the limited understanding of electronic properties represents a hurdle for further materials developments. Here, two key materials science issues for light-energy conversion are addressed: bandgap tunability via the quantum size effect, and photocarrier trapping. Nanocrystals are synthesized with controlled sizes varying from 3 to 30 nm. In this size range, bandgap tunability is found to be very small, a few tens of meV. First principles calculations show that a useful blueshift, in the range of hundreds of meV, is achieved in ultra-small nanocrystals, below 1.5 nm in size. Similar conclusions are envisaged for the class of pnictide chalcogenides with a ribbon-like structure [Pn4Ch6]n (Pn = Bi, Sb; Ch = S, Se). Time-resolved differential transmission spectroscopy demonstrates that only photoexcited holes are quickly captured by intragap states. Photoexcitation dynamics are consistent with the scenario emerging in other metal-chalcogenide nanocrystals: traps are created in metal-rich nanocrystal surfaces by incomplete passivation by long fatty acid ligands. In large nanocrystals, a lower bound to surface trap density of one trap every sixteen Bi2S3 units is found. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it